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Abstract

A REVIEW OF THE RELATIONSHIP BETWEEN
By Bruce W. Strand, March 1981. ESS Staff

The final usefulness of the physiologically based weather-crop yield models
now being developed will depend in part upon the degree to which point
observations of weather phenomena can be extended to surrounding regions.

This report reviews methods of estimating areal data from point estimates,
methods of relating macro and micro climatic data, and discusses the conflicts
involved in treating such problems as accuracy vs. scale, correlation decay,
and limits of scale interpolation. Two areas of investigation that could be
pursued with respect to these problems would involve the use of either
"synoptic climatology" or of data interpolation methods. Of these two
methods, a synoptic classification procedure seems more desirable.
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Spatial Scale of Crop-Yield Models:
A review of the Relationship between Scale of Models and Accuracy

Bruce w. Strand

Introduction

The U.S. Dept. of Agriculture has started to develop and evaluate complex,
physiologically based weather-crop yield models to meet its need to generate
ever-more accurate estimates of grain yields and production. The
implementation of such models, designed for small areas, for the construction
of yield estimates for large areas, would require effective use of procedures
for generalizing point weather observations to large areas.

This paper, the final report of a three month literature search for the Yield
Research Branch, Statistical Research Division, Economics and Statistics
Service, U.S. Dept. of Agriculture, reviews methods of applying small scale
models to large areas, notes limitations to those methods, and identifies
research that should be considered in any selection or evaluation of models.

Weather-croD yield Models

In general, area weather-crop yield equations relate final yields, or
in-season crop growth and development to weather and soils data through
solving a series of simultaneous equations. Five types of statistical studies
can be used to estimate weather-crop yield models. They are:

1) Analysis of long series of yield data from one particular site(i.e.,
time series)
2) Analysis of yield data from many sites during one particular year

(i.e.,cross-sectional studies)
3) A combination of 1) and 2)
4) Studies of the relationship of yield forming processes to weather

conditions during short periods of time.
5) Studies in which the soil is standardized to eliminate spatial and/or

edaphic differences [36]
Several yield models of interest to U.S.D.A. have been produced by methods 1)
and 4) above. The yield models of Arkin, et.al. [1,2] are examples of type
#4). Studies that consider, contain or use spatial information are of types
2) and 5). The 'Thompson' type yield models are an example of type 11)[42].

Weather-crop yield models could exist on the same continuum of scale as their
input data. However, it is necessary to divide up the atmospheric as well as
the soil, plant and water phenomena into distinct classes for the purpose of
model application. While disagreements as to class intervals exist, the
following scales and their limits are often found in meteorology[15]:

Micro-scale .01 to 100 M
Local scale 100 to 5,000 M
Meso-scale 1000 to 20,000 M
Macro-scale 10,000 to 10,000,000 M
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Weather-crop yield models generally are designed to estimate final crop
yields at the same scale as their input data. State crop yields are
estimated with equations using statewide weather averages. Weather-crop
yield models for entire countries are generally yearly models, state
level yield models tend to be monthly models, and plot scale models may
even require daily and hourly data. Most models have been developed
using either large area or plot data. Meso-scale models, (i.e., weekly
models, 10-500 SQ.KM.), have seldom been developed. This is due to the
unavailability of weather and crop data at these scales. Figure 11 below
diagrams this relationship[39].
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Figure #l-Yield models vs. time and space inputs

Obviously, the scale of the input data of the model has strong control
over the scale of the model. Unfortunately, it is seldom that all the
data needed for a model are available at the same spatial and temporal
scale. Crop yield data may be available at the county level, whereas
weather data may only be available for larger regions. Also, weather
data may be available daily, but crop condition or growth stage data may
only be available for a few times during the growing seasop, if at all.

Small scale plot developed ('third generation' in figure #1) weather-crop
yield models are being considered for use in yield production estimation
by the U.S. Department of Agriculture because they appear to offer
increased precision in estimating final crop yields in contrast to large
area models. Their increased preciSion is due to several factors.
Because these models were designed to operate in a manner similar to
actual plant processes, they are better able to 'describe' plant growth
and development processes than regression models that relate weather
variables to final yields. Secondly, detailed weather and crop
information is used to create the model (i.e.,estimate model
coefficients). These detailed weather and crop measurements are more
likely to represent the actual growing conditions at a place than are
large area estimates. Thirdly, by only considering a small region, these
models are not likely to mix input variables which have different scales.
Evaluation of the suitability of these models for large area production
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estimates involves determining the relationship between model
performance and spatial scale. Because any small scale weather-crop
yield model will need to be applied over the entire crop growing region,
a review of the relationship of models to scale, their accuracy and
potential method of applying them over the entire region is necessary in
order to choose the most appropriate scale of application. Satisfactory
relationships between macro- and micro- scale yield models should stand
between the extremes of over-simplification on the one hand and excessive
refinement on the other. Oversimplification is likely to be seriously
misleading because of the associated failure to recognize important
variables.

Estimatin2 Areal Data

There are two basic methods for estimating areal averages. One method is
to divide the entire area into regions. This is usually done by fitting
polygons around or between the data points. For example, if weather data
are to be estimated for a large area, each weather station would be in
the center of a polygon and the entire area would be divided into a
series of polygons. Each weather station is then assigned a weight
proportional to the (cropland) area of its polygon. Another method used
by a commercial firm for economic modeling places weather stations at the
vertices of triangles •

The second method of estimating areal data averages involves fitting a
'surface' to the area through the data points. If a least squares
regression method is used to fit equations to the spatial data, the
resulting equations are often called a 'trend surface'. The regression
equation can be either a polynomial or a Fourier equation. This method
was used by Runge to interpolate values between the closest weather
stations[31]. His equation is:

x=(1/4Pik)exp(-r**2/4k),
where k is a parameter determining the shape of the weight factor which
is to be related to the density of the observed data, and r is the
distance. In contrast to this method, Feyerherm related plot based
estimates of yield to crop reporting districts (CRD's) yields with
linear regressions[10]. His final regression was:

CRD{yield}= 11.7+0.01*(Plot-based yields)**2

indicating a curvilinear relationship between plot yields and CRD yields.
Feyerherm suggested this relationship to account for 'grazed out' wheat
losses in poor crop years. In addition, Feyerherm's equation does not
consider the effect of the varying sizes of the CRD's on his regression
equation.

The third method of relating micro- and macro- models is based on
physical model building techniques. Civil engineering studies have
attempted to resolve this problem by 'linearizing' the effect of spatial
differences[30].
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Either of these methods has shortcomings. In order to apply a plot
developed yield model to a large region, an assumption must be made
concerning the general relationships between weather and crop development
and growth rates over several order magnitudes of scale. That is to
say, the same coefficients found to be useful in relating, for example,
locally measured solar radiation to locally determined crop growth rates
should apply equally well for a regional average of solar radiation when
related to a regional average for growth rate. If the relationships
hold, then the relationships are linear over the several orders of
magnitude. Such linear relationships may not be true. Feyerherm found
that he had to use a non-linear relationship between yield at the plot
level and the crop reporting district (CRD).

Aggregating or 'scaling up' a model may be as large a source of errors
and variation as 'scaling down' to plot size. When observations are
aggregated by areal units and recorded as totals, the variations within
each unit is 'averaged out'. This averaging process removes surface
features whose wavelengths are less than the size of the data unit [19].
Levels of aggregation of data should be related to the sensitivity scale
of the variables under investigation. Such a procedure has not been
applied to crop yield models.

AccuracvlVs. Scale

Crop yield models derived from test plot data may show a marked reduction
in accuracy when applied to large area estimates. The model input
variables and their weights derived from plot size data may not be valid
for large areas. Relationships between the micro-climate of a research
plot and the locally measured weather variables may be more direct than
the relationship of the large scale (synoptic scale) air movements to the
local weather measurements. In fact, some of the variables useful in
modeling crop yields at the plot level, i.e., water holding capacity per
soil depth or soil textures per depth, may have little or no meaning at
such larger spatial scales as NOAA Climatic Divisions. Local variations
in these variables may be 'averaged out' with aggregation to larger
areas.

In contrast, crop yield models can be applied to too small of areas with
a different set of problems. First, there may be redundant information
at very small scales. If the same general crop forming elements are
found over an area appreciably larger than the scale at which the model
was estimated, needless computations will occur. In such cases, one
observation would prObably be sufficient for the entire region.
Secondly, because weather data are seldom collected at very fine grid
levels, some data will need to be estimated via any of several methods.

Yield models use several input variables that may not have equal variance
over changing spatial and temporal scales. Some variables such as winter
minimum temperature may be fairly uniform over large areas or at least
under the same synoptic patterns. Other variables such as summer
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rainfall may need very dense gauge networks to achieve measurement
accuracy for use in these models. In a study evaluating rain gauge
network densities, Huff and Shipp found that there would need to be rain
gauges every 2 miles in the warm seasons compared with 6 miles in the
cold season to explain 90% of the variation in rainfall[17]. Huff found
summertime convective rainfall to be 3 to 4 times more variable spatially
than winter synoptic scale rainfall[16].

Rainfall Variabilitv
Almost all crop yield models use rainfall data in their models. Rainfall
tends to be the variable in the yield equations with the highest spatial
and temporal variability. In marginal crop growing areas, moisture
stress is often present and it is the single most important climatic
variable controlling yield[44]. For some climates, higher variations in
rainfall amounts occur more often during the summer months than in the
winter. For example, summertime convective rainfall may be 2 to 3 times
more variable than winter synoptic rainfall [16]. Variations over time
in rainfall has been treated by numerous mathematical and statistical
methods. Crutcher [9] found that time series rainfall could be fitted to
a GAMMA density function, and has developed a computer program that
estimates probabilities of rain.
Correlation decay is the rate at which the correlation between two
observations decreases with increasing distances. Correlation decay
formulas have the general form:

r(x,y)=e··-b(x··2+y··2)··1/2,
where the correlation between a measurement at x and yare decreasingly
related to each other by a rate~. In this equation, (x••2+y••2)••1/2 is
the cartesian equation for distance between any two points, x and y.
Rainfall patterns that fit this equation are called 'isotropic' patterns,
meaning the correlation decay is equal in both the x and y direction.
Rainfall in some storms appears to be isotropic [33], but anisotropic
rainfall correlations appear to be more common in the literature[14].
Sneva and Calvin [36] found that bearing affected correlation decay with
minimum decay along the direction of the storm track. Rainfall amounts
can be stratified by the type of storm that produce rain. Such
stratification often reduces rainfall variability appreciably. The value
of the exponent 'b' in the correlation decay equation has been shown to
vary based on the synoptic type of the rainstorm. Therefore, any
equation that seeks to estimate rainfall could contain an interaction
term relating season and rainfall type Huff and Ship [18],divided
storms into three general synoptic types; frontal storms, air mass storms
and low pressure center passage, and were able to substantially reduce
rainfall variances. Patrinos and others [27], stratified rainfall
records into 'wet' and 'dry' seasons, and achieved similar reductions in
rainfall variability within weather 'type'. Huff and Shipp [16] found
correlation decay was greatest in storms associated with thunderstorms
and air mass storms.
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Interaction between scale and Time

In general, little work has been done on the role of spatial information
in yield models and interaction terms relating the joint effect of
location with time or other important model variables are seldom used in
yield equations. In that respect, most yield models can be considered to
be 'one-dimensional', i.e., they only consider the time dimension.
Stanhill [37] cites an Indian study which found "the interactions between
sites and years was very large [having] a greater effect on yield than
that of either year or site alone". Despite the pOSSible importance of
interactions between spatial and temporal variables in large area yield
modeling, spatial interaction terms are lacking in most detailed yield
models. More importantly, locally derived plot yield models could be
used to estimate large area yield with an undetected but large error in
estimate. For example, solar radiation (Rs) is measured at only 22 sites
throughout the Great Plains. If ~ is to be used in yield equations for
the whole Great Plains region, it will need to be estimated for the
region using these 22 observation points. While such a program is
underway, this density may not be sufficient as a basis for estimating ~
during certain critical seasons of the year[41]. They consider only
variations over time rather than space.

Covariance models using time and space information appear on the
literature but are not well known. One model proposed by Smit[35] to
include time and space covariance represents a number of time slices,
each slice describing spatial relationships that are assumed to be
constant over the N spatial units for the time point. From this a
comparison of parameters among the time slices considers the stability of
the spatial relationships over the I time points. In one study,
Sakamoto, Strommen and LeDuc investigated the result of differing
densities of weather data on a large area, 'first generation' crop yield
model and found no significant differences in the performance of the
model using the more dense network[32]. In a similar study, Greene and
others [12] using state-wide CCEA model and the smaller scale CRD
models for Oklahoma wheat yield for 1931-1973 also found no advantage to
using the smaller scale CRD yield models over the state wide yield
models. These results could be due to several reasons. For one, the
researchers estimated weather data from larger scale maps and inferred
this to the crop district scale based on isohyetal maps. While the data
came from two sources, they both estimated to the same spatial scale.
Thus the models should show similar results. Secondly, by averaging
weather data for large areas such as CRD's, the tendency is to depress
the extreme conditions that might otherwise be present if a smaller unit
was analyzed. Thirdly, 'Thompson' type models contain a trend variable
that is often responsible for most of the 'explanation' of the yield
variance. The trend variable was undoubtedly the same for both models
thus further complicating the comparison. Their findings could be due to
the small change in scale they tested against the proposed scale
differences to be expected when small scale physiologically based models
are tested. As these models are unlikely to be applied to small area
estimates, it would appear to be useful to test the effect of data
aggregation on physiologically-based crop yield models.
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Limits of Scale interoolation

In an important paper on the limits of predictability of weather, Lorenz
concluded that the presence of measurement errors was the final limiter
to weather prediction[22]. He found that the rate at which errors double
with time places constraints on the final changes in scale. These errors
move forward in time and scale until they make forecasts impossible.
While not all climatologists and meteorologists share Lorenz's views on
the limits of weather predictability, his general methodology must hold
true to some extent.

Another limit to consider in reducing scale is the number of increased
calculations required. A halving of the distance scale increases the
number of computations ten fold. By this process, the capacity of
current computers is very quickly reached, not to mention the limit of
budgets.

Soectral Gao

Some input variables may not be continuous or defined over the entire
range of spatial scales encountered in yield modeling. For example,
wind, which is used to model water demand in some yield models, generally
receives much less energy from mechanisms at the meso-scale than at the
micro-or macro-scale. Because local winds may result from local heating
and cooling while large scale winds may result from synoptic scale
weather patterns, wind energy 'peaks' both at the local and again at the
macro-scale[4]. This lack of 'continuity' of wind and other small scale
weather features with increasing spatial scale is called the 'spectral
gap' [22].

Barry notes that;
"the frequency spectrum of horizontah wind velocity near the ground

shows two distinct peaks of energy contribution, one at the synoptic
scale (cyclonic waves) and one in the domain of micro-scale wind eddies.
The gaps in the horizontal scale of dimensions between the two classes
reflect the uncertain location of the boundary between them."[4]

Priestley referred to this change in the modes of energy and
transfers as the 'handover' in scale[28]. Other weather variables
subject to this same 'spectral gap' when aggregation crosses the
between their different modes of transport.

A spectral gap may exist in sensible heat advection. Brakke and others at
Nebraska have identified a local and a regional component of sensible heat
advection[7]. Local advection arises from local or micro scale changes in
surface conditions such as at a irrigated field edge or an abrupt change in
vegetation height. Regional advection is due to large scale movement of
heated air. In the case of advection, local advection may be an important
factor in the locally derived yield equations, but may be insignificant at the
regional level, or have 'changed' its character as it moved up in scale.
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Priestley also suggested that data may have different forms at different
spatial scales. The temperature of a parcel of air changes 'form' as it moves
upward from the surface of the earth. At the surface or in the atmospheric
boundary layer, air temperature is a result of and 'represents' the local
energy fluxes. The temperature of the air near the ground may be largely
determined by the balance between the micro-meteorological fluxes of solar
radiation, evaporation, and the 'sinks' of these fluxes. As that air moves
vertically because of buoyant forces, it quickly becomes removed from its
source of heat and begins to cool at a given rate of temperature per increase
in height(lapse rate). Thus the temperature for the air mass at a height of 1
KH is very different from the temperature at 1 M height. In like manner, if
an air mass is moving horizontally, it will be modified by the surface over
which it flows.

Sources of SDatial Error

Errors due to sampling can result from the sampling 'frequency' not being the
same as for the underlying phenomena. This mismatching of sampling and data
frequencies may result in false interpolated values-'aliasing errors'. For
example, rainfall frequencies may be very short for some periods of the year
or in some locations, and much longer in others. Because weather-crop yield
models use input variables from many sources, there is no assurance that the
variables will all have the same spatial frequency.

The distance between sampling points limits the frequency that can be
determined in the weather data. The highest detectable frequency is the
'Nyquist Frequency'. It has a wave length of twice the sampling interval.
Higher frequencies may be present but will not be detected. Even Nyquist
Frequencies are usually in error, for unless the samples are taken exactly at
peaks and troughs, the measured amplitude will be too small[29]. Another
error that will possibly be present when spatially discrete data are used to
characterize a region is spatial autocorrelation. Spatial autocorrelation is
a measure of the degree of interdependence among the sample values
(weather, crop observations) between neighboring points. In time series
analysis, when error terms between consecutive time periods are related,
autocorrelation is said to be present. The same can be true for spatial data
points. If measurements at neighboring places are highly correlated, then
estimates of model accuracy such as coefficients of determination, will have
inflated values. This high spatial autocorrelation can be the result from
sampling a large homogeneous region several times, with each sample being
treated as an independent observation. Thus while only one observation will
be necessary to characterize the area, three or four observations will
increase the sample size but not the sample variability. Correlations will
thus be artificially high. Testing for spatial autocorrelation will be
necessary when yield models are applied to relatively small scales because
much inputed data will interpolated from sparsely spaced measurement points
and should therefore be highly related to each other.

Examples of methods of testing for spatial autocorrelation can be found in
Cliff and Ord [8]. These are modifications of Markovian equations adapted to

- 8 -



spatial data problems. Another method that can also be used to reduce spatial
autocorrelation involves rotating the sampling grid axis to achieve minimum
correlation between the sampling axis. Unfortunately, this method requires a
regularly spaced grid sample network [21]. This method should be useful if
small scale weather data such as county data, are used for yield modeling. In
this case, orienting the sampling axis perpendicular to the direction of storm
tracks should allow for maximum separation of the weather data.

Svnootic Climatolo~v

p Synoptic climatology classifies days based on the similarity of their
synoptic-scale weather patterns to other patterns. All the days of a year may
thus be classified as belonging to eight or nine different categories of days.
Two general methods used to classify weather map patterns appear in the
literature. One involves the subjective classification by a trained
meteorologist, another uses a map correlation procedure [23]. Orthogonal
eigenvectors of weather data can also be used. Methods of classifying weather
'days' have been shown useful in several applications despite its long abused
standing with meteorologists as being too 'subjective'. In one comparison of
two synoptic classification methods, their utility was assessed and each was
found useful[6].
Synoptic classification of weather data seems preferable to the use of static
estimates of weather when they will be used in yield models. As an example,
regional estimates of solar radiation (Rs), can be estimated in two ways.
The historic series of recorded Rs for locations can be tabulated and
frequency distributions can be given together with with basic distribution
parameters, i.e., means, standard deviations, skewness, and so forth. An
alternative approach, using synoptic climatology would be to classify daily
Rs by similarity to specific synoptiC weather patterns. This method would
have the added advantage of being related to the meteorological processes that
produced the data as well as being related serially with one another, i.e.,
one days events would allow a probability statement about the occurrence of
the event on the following day. In a synoptic climatological study of S.
California, classification by discriminant analysis showed good success in
predicting the following 'type' of day 88% of the time[24]. An additional
advantage of a synoptic classification approach to estimating and
interpolating weather data such as solar radiation ~ is that information
would be generated concerning the spatial extent to which the data are
homogeneous. Within a given 'weather system', the same general energy balance
relationships will exist. There are limits to this method, however. As noted
by Suckling and Hays,[40], solar radiation can not be estimated from the
synoptic type alone. However, as an adjunct to solar radiation measurements,
synoptic classification of days offers a useful method for interpolating
between existing weather stations. A similar study by the author, relating a
simplified synoptic classification to Texas data confirmed their results[38].

An alternative method for estimating both missing data and for computing
regional averages of climate data rely on several interpolation techniques.
In these methods, missing data are estimated from surrounding data points.
Promising methods for such data are forms of Fourier trend surface analysis
[3], reciprocal distance weighted methods[43],and orthogonal eigenvector
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methods[13]. Comparisons of these methods for wind systems
made[11]. One possible method can 'weight' neighboring data
interpolation based on their relative direction[34]. This method
useful if knowledge of storm center directions becomes available.

Orthogonal eigenvectors of weather data have been shown to contain very useful
mathematical properties in modeling or estimating data. The independence or
orthogonality of the combined weather variables is a desirable feature in
modeling, but a limitation is their non-physical basis of the derived
variables. The principal components are mathematical entities that have no
direct meaning in the observable world[13].

Conclusion

In most cases, the scale of application of yield models is constrained by the
scale of the final yield statistics. The application of yield models 'below'
the county scale is unlikely in any national yield model. However, the choice
of the scale of application will in some measure await the development of
statistical tools to evaluate the trade-offs between the increased costs of
small scale estimates vs. the inaccuracies in applying advanced crop models to
very large areas.
As with most fields of inquiry, several approaches to this problem are

possible. It is hoped that the increasing division seen between small scale
yield modelers and large scale statistical modelers of crop yields will not
become hardened into separate camps. The need for a 'merged' approach is
vital.
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